Optimized Removal of Sodium Dodecylbenzenesulfonate by Fenton-Like Oxidation Using Response Surface Methodology

نویسنده

  • Ali Reza
چکیده

This study investigates the degradation of sodium dodecylbenzenesulfonate (SDBS) in aqueous solution by Fenton-like oxidation process. The effects of different parameters such as concentrations of ferric chloride and hydrogen peroxide, pH and reaction time on the SDBS removal and Chemical Oxygen Demand (COD) reduction were evaluated. Response Surface Methodology (RSM) with Central Composite Design (CCD) was used to study and optimize the oxidation process. A quadratic polynomial equation could accurately model the SDBS removal with an R of 0.98. The results showed that pH and time were the most significant parameters affecting SDBS removal and COD reduction, respectively. A high SDBS (90.5%) and COD (70.7%) reduction efficiency was obtained at the optimal conditions of 60 min, pH 4 and 8.82 mM of H2O2 and 3.67mM of Fe. In this work, the effects of some organic compounds on the degradation of SDBS by Fenton-like process were examined. The results showed that 50 mgLof oxalic acid slightly enhanced the SDBS degradation efficiency while acetic acid and Ethylenediaminetetraacetic acid (EDTA) reduced it.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimized Removal of Sodium Dodecylbenzenesulfonate by Fenton-Like Oxidation Using Response Surface Methodology

This study investigates the degradation of sodium dodecylbenzenesulfonate (SDBS) in aqueous solution by the Fenton-like oxidation process. The effects of different parameters such as concentrations of ferric chloride and hydrogen peroxide, pH and reaction time on the SDBS removal and Chemical Oxygen Demand (COD) reduction were evaluated. Response Surface Methodology (RSM) with Central Compo...

متن کامل

Polluting potential of post-Fenton products in landfill leachate treatment

Fenton process, as one of the most conventional advanced oxidation processes, is widely used in the treatment of specific wastewaters, especially landfill leachate. In current study, the main target was to evaluate some neglected aspects of Fenton process in operational applications. Thus, three novel responses were introduced. Mass removal efficiency evaluates overall recalcitrant destruction ...

متن کامل

Catalytic effect of Fe@Fe2O3 nanowires and Fenton process on carbamazepine removal from aqueous solutions using response surface methodology

Carbamazepine is one of the hydrophilic compounds identified in aquatic environments. Due to toxicity and bio-stability of this psychotropic pharmaceutical in the environment and humans, its removal efficiency and mineralization are important. In this study, synthesized Fe@Fe2O3 nanowires were applied to improve Fenton oxidation process using FeCl3.6H2</sub...

متن کامل

Optimization of factors affecting on sulfide oxidation from synthetic spent caustic by Haloalkaliphilic Thioalkalivibrio versutus by focus on sodium ion effect: Application of response surface methodology

In the present study, the effects of four factors including initial sulfide concentration (mg l-1 ), agitation speed (rpm), amount of inoculums (%) and sodium concentration (mg l-1) on removal efficiency (%R) and yield of sulfate production by Thioalkalivibrio versutus from synthetic spent caustic were investigated. For this purpose, experiments are designed by design of experiments (DOE) and R...

متن کامل

Efficient Rapid Deodorization of Mercaptan-Contaminated Soil by Sono-Fenton Process: Response Surface Modeling and Optimization

The entry of mercaptans into the environment as an odor pollutant has always been considered as one of the environmental concerns. In this research, a sonochemical oxidation (sono-Fenton) method was used for rapid deodorizing of tert-butyl mercaptan (TBM) contaminated soil. The design of the experiments was conducted by CCD method and the effect of four different factors was investigated on the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017